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Abstract—A novel microarray value imputation method, HIC-
CUP1, is presented. HICCUP improves upon existing value
imputation methods in the several ways. (1) By judiciously
integrating heterogeneous microarray datasets using hierarchical
clustering, HICCUP overcomes the limitation of using only single
dataset with limited number of samples; (2) Unlike local or global
value imputation methods, by mining association rules, HICCUP
selects appropriate subsets of the most relevant samples for better
value imputation; and (3) by exploiting relationship among the
sample space (e.g., cancer vs. non-cancer samples), HICCUP
improves the accuracy of value imputation. Experiments with
a real prostate cancer microarray dataset verify that HICCUP
outperforms existing approaches.

I. INTRODUCTION

Microarray technology allows us to monitor thousands of
genes with different types of tissues, species, and experimental
conditions. Microarray data has been widely used in many bi-
ological applications such as inferring gene function and gene
network, drug discovery, and patient diagnosis [1], [4], [6]. In
real experiments, often, microarray data contains considerable
number of missing values due to various reasons such as
insufficient resolution, image corruption, or dusts and scratches
on the slides [20]. Because many microarray data analysis
techniques require a complete matrix of gene expression values
as input, the imputation of missing values in microarray data
has attracted a lot of research [3], [20].

Formally, let G = Rm×n be a gene expression data matrix,
which denotes the microarray data of m genes and n sam-
ples/experiments, where m � n. Then, the Value Imputation
Problem in the context of gene expression values is to estimate
a missing value in the l-th location of gene i (gi), denoted as
Gi,l, using other expression values available in G.

A. Motivation

Existing value imputation approaches can be classified into
two categories: local and global. In the local approach, such as
KNN, the missing expression value in the l-th sample of gene
i, is imputed using the expression values for the l-th sample
in a set of similar genes S = {g1, g2, · · · , gj} [20]. In the
global approach, a set of basis eigen-genes are generated using
techniques such as Singular Value Decomposition (SVD),

1HICCUP stands for HIerarChical Clustering based valUe imPutation.
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Fig. 1. Microarray and Sample Hierarchy

and missing values are imputed using regression models
on the eigen-genes [3]. Experimental results show that the
performances of local and global approaches vary depending
on types of datasets. Although useful as they are, however,
existing approaches have the following limitations:
• Most existing methods impute missing values using a

single dataset. Because a typical dataset contains a small
number of samples with a large number of genes, this
lack of samples makes value imputation difficult.

• Since the number of samples in each dataset is limited,
it is hard to build a general imputation model that covers
many possible biological properties (e.g., different stages
of cancer and non-cancer samples)

• Although gene expression values consist of two dimen-
sions, sample and gene spaces, existing approaches tend
to focus only on the gene space. The imputation models
that un-selectively use all the samples (e.g., cancer and
non-cancer samples) may not reflect the different types
of correlations within different types of samples.

B. Our Ideas

To overcome the limitations of existing approaches, one
may aggregate samples from multiple microarray datasets.
However, since microarray datasets from different sources
have different characteristics, their integration must be done
carefully. For instance, for a gene in an early stage cancer
tissue, it is not reasonable to impute missing values using late
stage cancer tissues. Rather, we should use early stage can-
cer tissue samples and experiments conducted under similar
conditions as the target sample.
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We propose to build a unified imputation model by integrat-
ing heterogeneous microarray datasets to make the imputation
model robust and accurate. In particular, we propose to utilize
a hierarchical structure to reflect the correlations in the sample
space among those heterogeneous datasets. Correlations in the
gene space are modelled using association rules [18] within
individual clusters of samples in the hierarchy. Given a target
sample with missing expression values, the value imputation
is conducted using association rules within the most relevant
sample cluster. The framework of our HICCUP imputation
method is presented in Figure 2.

First, by representing each sample as a vector of expression
values, all samples can be clustered into a set of hierarchically
organized subsets using the vector-based similarities among
samples. Note that, rather than using the whole set of genes, in
our approach, the similarities are calculated based on a subset
of genes that is selected using an entropy-based metric, for
each level of the cluster hierarchy.

Next, we extract a set of discriminative and covering gene-
values sets for each cluster to capture the statistical properties.
A gene-values set consists of a set of genes and its corre-
sponding ranges of expression values. A gene-values set is
discriminative in a sample cluster if the corresponding genes
and value ranges occurred only in this sample cluster but
not in any other sample clusters. A set of gene-values sets
covers a sample cluster if any of the samples in the cluster
can be modeled by at least one of the gene-values sets. To
extract such discriminative and covering gene-values sets, a
class-dependent discretization approach is applied to original
expression values [7].

Given a target sample with missing gene expression values,
relevant clusters are selected from the cluster hierarchy. The
intuition is that imputing values using only samples within
a cluster that shares similar statistical properties should yield
better results. Each sample cluster and the target sample are
represented as a vector of discriminative and covering gene-
values sets. The matching score between a cluster in the
hierarchy and the target sample uses the cosine similarity
between the two vectors. The sample cluster with the highest
matching score is selected. Finally, to estimate the missing
value, a set of gene-values association rules with the target
genes in the right hand side (RHS) are extracted and used if
there exist any in the relevant cluster.

C. Contributions

Our contributions are as follows:

• Complementing existing approaches using single mi-
croarray dataset, HICCUP integrates heterogeneous mi-
croarray datasets and chooses the most relevant samples
using hierarchical clustering technique for better value
imputation.

• Unlike existing approaches focusing only on the gene
space, HICCUP explores correlations in both the sample
space (e.g., using hierarchical clusters) and the gene space
(e.g., using association rules) across different microarray
datasets.

• Experimental results show that the hierarchical clustering
based integration of heterogeneous datasets substantially
improves imputation quality. In addition, our association
rule-based imputation outperforms the local and global
imputation approaches.

II. HICCUP: HIERARCHICAL CLUSTERING BASED VALUE

IMPUTATION

As shown in Figure 2, the first step is to integrate heteroge-
neous microarray datasets. In this paper, we assume that these
datasets share the same gene identification and can be mapped
into a single dataset. Given the integrated data collection,
the HICCUP imputation consists of the following subtasks:
(1) construction of cluster hierarchy, (2) discretization of
gene expression value, (3) discriminative and covering pattern
extraction, (4) relevant cluster selection, (5) association rule
mining, and (6) imputation.

A. Construction of Cluster Hierarchy:

To cluster the samples in microarray datasets into mean-
ingful cluster hierarchy, it is critical to select the appropriate
subset of genes. In the literature, Existing work on subspace
clustering showed how to cluster high dimensional data and
partially solved the curse of dimensionality [14]. Also, there
are works on biclustering to cluster gene expression data
simultaneously [13]. However, subspace-based clustering and
biclustering cannot fully represent the hidden biological prop-
erties in our cases as different clusters are partitioned based
on different subsets of genes. In our approach, the variances
for a single subset of genes are expected to reflect one of the
statistical properties, and different subset of genes are selected
and used for clustering such that different statistical properties
can be represented. Our clustering is similar to the approach
in [19], but we are using hierarchical clusters to reflect groups
of samples using different subsets of genes at different levels.

Gene selection for sample clustering is the problem of
feature selection [12]. Feature selection has been well stud-
ied for supervised learning such as classification, where a
priori knowledge of the class label of each object is avail-
able [5]. Feature selection for unsupervised learning is rel-
atively more difficult. There are two approaches in feature
selection for clustering: the wrapper approach [8] and the filter
approach [5]. In this paper, we adopt the filter approach to
select different subsets of genes for each level of clusters in
the cluster hierarchy. The filter feature selection is based on the
observation that values of features that form clusters have very
different point to point distance histograms than features that
do not form obvious clusters. Consider the following example.

Example 1. Figure 3(a) and (b) show nine samples described
by two different sets of gene expression values. For simpler
illustration, we only use two genes. It can be observed that
the samples in Figure 3(a), which are described by the ex-
pression values of gene1 and gene2, do not form any obvious
cluster as the points are uniformly distributed. However, in
Figure 3(b), samples clearly form three clusters with respect
to the expression values of gene3 and gene4. In Figure 3
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Fig. 2. Overview of the HICCUP.
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(c) and (d), distance refers to the Euclidian distance between
any two samples with respect to the two-dimensional gene
expression values; frequency refers to the number of times a
distance value has occurred. From another point of view, the
point to point distance distribution with respect to gene1 and
gene2 as shown in Figure 3(c) has a predictable bell shape,
while the distances with respect to gene3 and gene4 has a
very different distribution as shown in Figure 3(d). �

a given subset of genes, denoted as Gm, Ai =
Ai1, · · · , Ai|Gm| is the expression values for genes in G in
sample i, where |Gm| is the cardinality of the subset of genes.
For a set of n samples, let Dij be the normalized distance
between two samples i and j over the gene subset Gm, the
distance-based entropy of a gene subset Gm is defined as
follows:

EGm
= −

∑
i

∑
j

(Dij log Dij + (1 − Dij) log(1 − Dij))

Using the distance-based entropy measure, a subset of
genes with the lowest entropy is selected to cluster a given

set of samples into smaller clusters. For example, given the
microarray data in Figure 1 (b), over the entire sample space,
in the first level, we may find out that the subset of genes G =
{g1, g2, g3} has the lowest distance-based entropy. Then, the
entire samples are clustered into three clusters (children of the
root in the hierarchy) based on the similarity calculated over
the selected subset of genes.

Algorithm 1 Construction of sample cluster hierarchy.
Input: The integrated microarray matrix M

Threshold for the number of sample in each cluster α
Output: A sample cluster hierarchy H

1: Initialize root of the cluster hierarchy as M = C00
2: Let i← i′ ← 1
3: while i ≤ i′ do
4: for all Cj

i ∈M do
5: Select the subset of genes with lowest entropy Gi

6: while |Cj
i | > α do

7: Cluster Cj
i into clusters {C0i+1, · · · , Cn

i+1}
8: Add { C0i+1, · · · , Cn

i+1 } to M
9: j ← j+1

10: i′ ← i + 1
11: end while
12: end for
13: i = i+1
14: end while
15: Return H = M

The cluster hierarchy construction algorithm is shown in
Algorithm 1. Recursively, each cluster in the n-th level of the
hierarchy is further partitioned into smaller clusters using a
new subset of genes with lowest entropy over samples in this
cluster till the number of samples reaches a certain threshold
(Line 5-10). Note that Cj

i refers to the jth cluster in the ith level
of the cluster hierarchy. An illustrative example is shown in
Figure 1(a), where Figure 1(a) shows the original dataset and
subsets of genes with the lowest entropy over each cluster of
samples. The cluster results are shown in Figure 1(a) with
the same color scheme. Note that the choice of clustering
algorithm is orthogonal to the features and similarity measures.
In this paper, we use the graph cut clustering algorithm with
Pearson correlation based similarity measure [16].

1-4244-1509-8/07/$25.00 ©2007 IEEE 73



B. Discretization of Gene Expression Values

In the cluster hierarchy, to extract discriminative gene-
values sets, for each group of sibling clusters, the gene
expression values are discretized. In this case, each cluster is
taken as a class and then a class dependent continuous value
discretization method [7] is employed. The basic idea is to find
some cut point(s) for a numeric feature such that the intervals
in the result are as pure as possible within each cluster. For
those features whose values are relatively randomly distributed
between different classes of samples, the algorithm will not
find any proper cut point, and we should thus discard them
for the gene-values set extraction.

Given a subset of samples S′, a gene g′, and a partition
boundary B′, the class information entropy of the partition
induced by T ′, denoted as E(g′, T ′, S′), is defined as:

E(g′, T ′, S′) =
S1

S′
Ent(S1) +

S2

S′
Ent(S2)

Ent(S) = −
k∑
i

p(Ci, S) log(p(Ci, S))

where k is the number classes and p(Ci, S) is the portion
of sample in S that are in class Ci, S1 and S2 are the two
partitions generated with B′. The partition with minimum
entropy is selected and the bi-partition iterates till the number
is below the threshold. Essentially, for each group of sibling
clusters in the cluster hierarchy, a different discretization
scheme is used such that the intervals can effectively reflect
the difference among siblings.

C. Discriminative&Covering Pattern Extraction

For each cluster, we propose to extract a set of discrimina-
tive and covering gene-values sets. First, we define the gene-
values set and frequent gene-values set. Then, we introduce
the concept of discriminative power and coverage.

Given a cluster of samples Si in cluster i, each sample Sij ∈
Si consists of a it gene-values set.

Definition 1 (Gene-values Set) A gene-values set GVSm is
defined to be a set of genes and their corresponding ranges
of expression values. A gene-values set can be represented as
GVSi = {g1 [t1, t′1], g2 [t2, t′2], · · ·, gn [tn, t′n]}, where gm

(i ≤ m ≤ n) is a gene and [tm, t′m] is a real expression value
range for the corresponding gene lying between [0, 1]. �

A sample sj supports a gene-values set GVSm, denoted as
sj ≺ GVSm, if all genes gi in sj occur in GVSm and the
expression value of gi lies in the value range of gi in GVSm.
The support of a gene-values set GVSi in a sample cluster
Cl, support (GVSm, Cl), is the total number of samples in Cl

that support GVSm. Based on the support value, we define the
frequent gene-values set for a given cluster of samples.

Definition 2 (Frequent Gene-values Set) Given a cluster of
samples Cj , a gene-values set GVSi = {g1 [t1, t′1], g2 [t2, t′2],
· · ·, gn [tn, t′n]} is defined as a frequent gene-values set iff
support(GVSi, Cj) ≥ θ ∗ |Ci|, where θ is the user-defined

minimal support threshold and |Ci| is the number of samples
in the cluster. �

Given a cluster of samples, there will be a very large number
of frequent gene-values sets. We define the relations between
different frequent gene-values sets as follows:

Definition 3 (Generality vs. Specificity) Given two frequent
gene-values sets GVSi and GVSj , GVSj is more general than
GVSi iff: ∀ gm ∈ GV Sj : ∃ gm′ = gm ∈ GV Si such that
tm′ ≥ tm and t′m′ < t′m or tm′ > tm and t′m′ ≤ t′m. Also, we
say GVSi is more specific than GVSj . Note that genes exist in
GVSi may not necessarily exist in GVSj . �

Given the cluster hierarchy, for each cluster, there will be
a set of frequent gene-values sets. We define discriminative
frequent gene-values sets as follows:

Definition 4 (Discriminative Frequent Gene-values Set)
A discriminative frequent gene-values set Xm for cluster
Cm is defined as: Xm = {GVS1, GVS2, · · ·, GVSk}, where
∀ GV Si ∈ Xm : � any GV Si′ ∈ Xp(m) ∪ Xs(m) such that
GVSi is more general than GVSi′ , where Xp(m) and Xs(m)
are the discriminative frequent gene-values sets for cluster
Cm’s parent cluster and sibling clusters, respectively. �

Discriminative frequent gene-values sets can characterize
samples in a specific cluster and can distinguish samples in this
cluster as much as possible from samples in its sibling clusters.
The discriminative frequent gene-values set should have no
overlap with its parent sample cluster as well. However, dif-
ferent discriminative frequent gene-values sets have different
supports and their discriminative contributions are different.
To differentiate the discriminative power of different frequent
discriminative gene-values sets, we propose the concept of
discriminative power.

Definition 5 (Discriminative Power) Given a cluster Ci, its
sibling clusters in the hierarchy is represented as a set of clusters
Cs = { Cs

1 , Cs
2 , · · ·, Cs

n}, the discriminative power of GVSj ∈
Xi for cluster Ci is defined as:
P (GV Sj , Ci) =

support(GV Sj,Ci)
|Ci| · log

∑n
m=1 |Cs

m|∑n
m=1 support(GV Sj,Cs

m) . �

The components of the formula above to determine the
discriminative power are similar to term frequency and inverted
document frequency in information retrieval. The importance
of a gene-values set increases proportionally to the number of
times it appears in the cluster but is offset by how common
this gene-values set is in all of the clusters in the entire dataset.

Based on the discriminative power, the set of frequent gene-
values sets can be ranked accordingly. Rather than using all
the frequent discriminative gene-values sets, we take the top-k
gene-values sets that cover all the samples in the cluster as the
final discriminative and covering gene-values sets. The top-k
discriminative and covering gene-values sets for a cluster Ci

is denoted as D(Ci, k).

Definition 6 (Top-k Discriminative & Covering GVS)
Given a cluster of samples, Ci, and the corresponding
discriminative frequent gene-values sets Xi = {GVS1, GVS2,
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· · ·, GVSn} in descending order of discriminative power,
D(Ci, k) = {GVS′1, GVS′2, · · ·, GVS′k}, where ∀1 ≤ j ≤ k,
GVS′j = GVSj and ∀sl ∈ Ci, ∃ at least one GVSm ∈ D(Ci, k)
such that si ≺ GVSm. �

The value of k is based on the coverage of the frequent dis-
criminative gene-values sets. The coverage of a gene-values set
with support value of n is the set of n samples in the cluster that
support this set. The top-k discriminative and covering gene-
values sets are these k discriminative and covering gene-values
sets with the largest discriminative powers and they should
cover all the samples in the clusters. Note that, to handle the
missing expression values, we allow certain redundancy in the
frequent discriminative gene-values set. That is, there coverage
of some top-k discriminative and covering gene-values sets
may have overlaps.

Algorithm 2 Extraction of D(Ci, k).
Input: A sample cluster hierarchy H
Output: D(Ci) for each Ci

1: Let Ci represents the sample cluster in hierarchy H
2: Let Gf

Ci
be the frequent gene-values sets in cluster Ci

3: for all Ci ∈ H do
4: for all GVSj ∈ Gf

Ci
do

5: Calculate the discriminative power of P (GV Sj) with respect to the sibling
clusters of Ci

6: end for
7: Rank GVSj ∈ Gf

Ci
in descending order of P (GV Sj)

8: Let k=1
9: while Ci �= ∅ do

10: Ci = Ci − {sl|sl ≺ GV Sk}
11: D(Ci) = D(Ci) ∪GV Sk

12: k = k+1
13: end while
14: end for
15: Return D(Ci, k)

In this paper, we use the state-of-the-art frequent itemset
mining approach, FP-Tree algorithm [9], to extract the sets
of frequent gene-values sets for each cluster in the hierarchy.
Given, the sets of frequent gene-values sets for each cluster,
the algorithm extracts the top-k discriminative frequent gene-
values sets (Algorithm 2). The first step is to determine the
discriminative power of each gene-values set in a cluster by
testing on the sibling clusters. Then, the gene-values sets are
ranked in descending order of their discriminative power. k
top gene-values sets are selected till these sets cover all the
samples in the corresponding cluster.

D. Cluster Selection

Given a target sample with missing expression values, the
first step is to select the cluster of relevant samples. As the
classification power of every individual discriminative and
covering gene-values set is limited by its coverage, which
is usually not enough, we propose to use the aggregated
information of the entire set of discriminative and covering
gene-values sets. The cluster selection is performed in a top-
down manner. That is, firstly, one of the cluster in the first
level of the cluster hierarchy that is most relevant is selected.
Then, one of the children of this cluster is selected recursively
if the target sample matches any of the clusters. To measure

how good the target sample matches a cluster in the hierarchy,
we propose the matching score.

Definition 7 (Matching Score) Given the target sample si,
for any cluster Cj in the hierarchy, the matching score between
the target sample and the cluster is denoted as: Score (si, Cj)
= �si· �Cj

|�si|| �Cj | , where �si is the vector representation of the target
sample with respect to the gene-values set based vector repre-
sentation �Cj of Cj . �

HICCUP aggregate the discriminative power of all the gene-
values sets in a cluster to represent the sample cluster and the
similarity between the target sample with the corresponding
cluster is used as the score. Given the matching score for each
cluster, the cluster with the largest matching score is chosen as
the best matching in this level of the hierarchy. This matching
process iterates till no better cluster can be selected.

E. Association Rules Mining & Value Imputation

Given a cluster of samples, without the target sample, we
cannot specify the RHS of the association rule because we
observed that the number of association rules can be huge even
for a single cluster in the hierarchy. As a result, the association
rules are generated on the fly with respect to a specific target
sample and its missing values.

Suppose we have a target sample si with k missing expres-
sion values for G′ = {g′1, g′2, · · · , g′k} and n known expression
values for G = {g1, g2, · · · , gn}, for each gene g′j a set
of discriminative frequent gene-values sets that contain any
subset of G and g′j is selected. The gene-values sets are ranked
according to their discriminative power and the corresponding
association rules with g′j in the RHS is generated and ranked
according to the confidence value. Generally, the confidence
of an association rule X ⇒ Y is defined as conf (X ⇒ Y ) =
support(X,Y ) /support(X). For each association rule, rl,
extracted from gene-values set GVSi in sample cluster Cj

related to a target gene g′j , a priority score D(rl) is assigned.

D(rl) = P (GV Si, Cj) · Conf({GV Si − g
′
j} ⇒ g

′
j) · (|GV Si| − 1)

The association rule with the highest priority score is used
to estimate the missing value. HICCUP breaks ties by using
the overlaps of the estimations of multiple association rules.
All the association rules are generated based on the frequent
discriminative gene-values sets extracted in the previous phase.
However, in some cases, we cannot find any discriminative
gene-values sets for a specific sample with certain missing
expression values. In such cases, we propose to use the
KNNImpute or the row average imputation within this spe-
cific cluster of samples. Note that we are not directly using
the KNNImpute and row average imputation method on the
integrated dataset. Those methods are applied only to samples
in the most relevant cluster. As our experimental results shall
show in the next section, even by applying KNNImpute and
SVDImpute within the relevant sample cluster, the imputation
quality can be improved.
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III. EXPERIMENTAL VALIDATION

A. Datasets and Evaluation Metric

TABLE I
PROSTATE CANCER DATASETS.

Dataset # # Normal # Tumor Total #
Name Probes Samples Samples Samples
Singh 12600 50 52 102
Welsh 12626 9 24 33

LaTulippe 12626 3 23 26

In the following experiments, we use three prostate cancer
microarray datasets, on which the experiments were conducted
by different research groups. Details of the three datasets,
Singh [17], Welsh [22], and LaTulippe [11], are presented in
Table I. As the datasets are obtained possibly with different
experimental parameters, we integrate the three datasets by
normalizing the expression values to remove the effects arising
from variations in the technology and individual variations
rather than from the biological differences between samples.

In the above microarray datasets, there are no missing
expression values. Our strategy is to randomly pick and drop
some of the expression values. As a result, these samples with
missing values will be used as testing data, while the rest of
the samples are used to construct our imputation model. In our
experiments, we shall vary both the percentage of samples with
missing values and the percentage of missing values within
these samples.

To evaluate the quality of the imputed missing values, in
the literature, the normalized mean squared error(NRMSE)
metric was proposed as:

NRMSE =

√
mean[(yimpute − y)2]

std[y]

where yimpute is the imputed values of the missing values in
the target sample and y is the actual value of the expression
value. In existing missing value imputation approaches, real
values are the output of the imputation, whereas in our
proposed approach, the output is an interval that the missing
value belongs to. Note that, the intervals are not as specific as
these real values. However, the intervals are semantically as
meaningful as the real values as they are obtained from the
cluster hierarchy we constructed. In this paper, we extend the
NRMSE into the context of intervals. Specifically:

yimpute − y =
{

0, if y is within the interval yimpute

Avg[yimpute]− y, otherwise

B. Performance Comparison

To compare the performance of our proposed approach
with existing KNNImpute, SVDImpute, and their variant ap-
proaches, the following six different imputation approaches
are implemented:

• KNN-G denotes the global KNNImpute that uses the
whole set of integrated microarray dataset and the gene
similarities are calculated using the whole set of genes.

• KNN-L denotes the local KNNImpute approach that uses
only relevant clusters of samples, and gene similarities
are calculated only using the discriminative gene-values
sets of these clusters.

• KNN-S is similar to KNN-G but uses only single dataset
for samples and the gene similarities are calculated using
the whole set of genes.

• SVD-G represents the global SVD approach that uses the
eigen-genes extracted from integrated microarray dataset.

• SVD-L is the local SVD approach that uses eigen-genes
extracted from the corresponding single dataset.

• HICCUP refers to our proposed imputation method,
where only samples in the relevant cluster are used
and the imputations are obtained by association rule,
KNNImpute, and Row Average.

Figure 4 (a) shows the best performance of the six impu-
tation approaches, where 140 samples are used in the model
construction process and 21 samples are randomly selected
for testing. Note that this figure only compares the best
performance of the six imputation approaches. The effects
of different parameters will be discussed later. Specifically,
for KNN-G: K=13, for KNN-L: K=6, for KNN-S: K=11, for
SVD-G: 23% of the eigen-genes are used, for SVD-L: 19% of
the eigen-genes are used, for HICUP: θ = 0.1, α = 6, the
confidence threshold is 0.65.

KNN-L and KNN-G outperform KNN-S in terms of the
imputation quality measured by NRMSE. The reason is that
KNN-S only uses samples in a single dataset, which may con-
tain very few samples that have similar biological properties
to the target samples with missing values, while the KNN-G
approaches is based on a larger number of samples. Moreover,
both the KNN-S and KNN-G are using similarities calculated
using the entire set of genes, while KNN-L only uses the subset
of discriminative genes in the cluster hierarchy for similarity
calculation. As a result, the KNN-S and KNN-G approaches
may not be able to extract the set of really similar genes for the
imputation. Similarly, SVD-G outperforms SVD-L. The reason
is that the eigen-genes extracted from the integrated dataset
is more accurate to represent all the biological properties of
the samples. Overall, our HICCUP approach outperforms all
of the five other approaches and KNNs outperform the SVD
imputations.

Figure 4 (b) shows another set of experiments that compare
the quality of imputation while integrating heterogeneous
datasets. Seven different dataset combinations are used: three
single datasets, three combinations of two datasets, and one
that combines the three together. Note that for each experiment
10% of the samples in the datasets are randomly selected as
test samples and 5% of the entries are deleted as missing
values. The first character of each dataset is used to represent
individual and combined datasets. We see that when more and
more samples are combined together the quality of imputation
increases.

In summary, the results in Figure 4 (a) and (b) show that:
(1) by exploring the correlations between samples, the quality
of missing values imputation can be improved even if we use
KNNImpute and SVDImpute; (2) the quality of imputation
is improved when more and more heterogeneous samples are
integrated together, and (3) samples selected using the subset
of discriminative-genes-based similarity are more effective for
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missing imputation than the all-genes-based similarity.

C. Performance Evaluation Over Parameters

In this section, we evaluate the robustness of our HICUP
imputation approach with respect to different parameters:
percentage of samples with missing values, percentage of
missing entries in the sample, the minimal support threshold,
and threshold for the number of samples in a cluster.

Figure 4 (c) shows the quality of the imputation with re-
spect to different percentages of samples with missing values.
The experiments are conducted with the 161 samples in the
integrated dataset. Samples are randomly selected and entries
in these samples are randomly deleted as missing values. The
minimal support threshold is set to 0.1, the threshold for the
number of samples in a cluster is set to 6, and the confidence
threshold is set to 0.65. It can be observed that the quality
of imputation decreases as the percentage of samples with
missing values increases. However, our approach can produce
satisfactory imputation with even upto 20% of the samples
having missing values.

To evaluate the usefulness of the cluster hierarchy, which
consists of 6 levels in all of the above experiments, the quality
of imputation is evaluated with respect to the level of relevant
clusters that are used. Figure 5 (a) shows the statistics of
imputation quality using all the above experimental results.
It can be observed that: as the level of the relevant cluster
increases, the quality of imputation increases as well. This
is due to the fact that a target sample has to satisfy the
discriminative rules for all its parent clusters. As a result, to
select the larger level of clusters in the hierarchy, the target

sample is expected to be more similar biologically to the
cluster.

Figure 5 (b) shows the quality of imputation with respect
to the threshold for minimal number of samples in a cluster
and the minimal support threshold. It can be observed when
the minimal support threshold is less than 0.3, the quality of
imputation does not change much, whereas when it increases
beyond 0.3, the quality of imputation decreases quickly. By
looking into the gene-values sets, we found that most of the
discriminative gene-values sets have a minimal support less
than 0.3. As a result, based on the experimental results, we
propose to use 0.1 as the minimal support threshold in the
imputation scenario. At the same, this figure shows that 6 is
the best threshold for the number of samples in a cluster.

Figure 5 (c) shows the quality of imputation with respect to
the threshold for minimal confidence in the association based
imputation. We see that when the minimal confidence value
is 0.65, the imputation quality is the best even with different
number of missing entries in the samples. The reason is that
when the confidence is too small, some of the imputations are
not based on high correlations among genes and the quality of
imputation decreases. On the other hand, when the minimal
confidence is too large, some of the very useful associations
are filtered out and the imputation quality decreases as well.

IV. RELATED WORK

Existing missing gene expression value imputation methods
can be classified into two categories: local based approaches,
where genes that are similar to the target genes over the
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sample space are selected for the imputation; global based
approaches, where a set of eigen-genes are selected such that
every gene can be representation as the linear combination
of these eigen-genes [20]. Experiments with various datasets
show that KNNimpute appears to provide a more robust and
sensitive method for missing value estimation than SVDimpute,
and both SVDimpute and KNNimpute surpass the commonly
used row average method.

Also there are other imputation methods proposed based
on the correlations [3], [15]. Bo, Dysvik, and Jonassen, [3],
present a method named LSimpute based on the least squares
principle. They utilize correlations between both genes and
arrays. Experimental results show that LSimpute methods pro-
duce estimates that consistently are more accurate than those
obtained using KNNimpute. Also, they compared the LSimpute
with the expectation maximization (EM) based imputation and
show that performance of the LSimpute method is at least as
accurate as those from the best EMimpute algorithm. Sehgal,
Gondal, and Dooley proposed a missing value imputation
algorithm called collateral missing value estimation (CMVE)
using multiple covariance-based imputation matrices for the
final prediction of missing values [15]. The matrices are
computed and optimized using least square regression and
linear programming methods. More recently, Tuikkala, et al.,
investigated whether semantic similarity originating from gene
ontology (GO) annotations could improve the selection of
relevant genes for missing value estimation [21]. The results
indicated that GO information can enhance the performance
of the k-nearest neighbor algorithm when the number of
experimental conditions is small and the percentage of missing
values is high.

In most of the existing approaches, correlations between
genes are considered in the imputation process while the
correlations between samples are not fully considered. In our
HICCUP approach, both correlations will be considered by
utilizing heterogeneous microarray datasets. Moreover, rather
than only using the local or global correlations, we use the
association rules between different genes over similar samples.
We propose a systematic imputation method that integrates
existing KNNimpute and row average methods with simple
and group gene association rules.

More recently, Yoon, Lee and Park proposed to build
sample classifier by integrating heterogeneous microarray
datasets [23]. However, this approach did not consider missing
expression values and human labels of each sample have been
used as supervision.

V. CONCLUSIONS

In this paper, we proposed the first missing gene expression
imputation approach that integrates heterogeneous microarray
datasets. Specifically, we construct a cluster hierarchy to
model the hidden biological parameters of different clusters
of samples. Our association-rule based imputation algorithm
achieves a balance between local and global gene value impu-
tation approaches. Experiments conducted with real prostate

cancer microarray datasets show that our proposed imputation
approach outperformed the existing approaches.
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